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SUMMARY

A new scheme for convection term discretization is developed, called VONOS (variable-order non-oscillatory
scheme). The development of the scheme is based on the behaviour of well-known non-oscillatory schemes in
the pure convection of a step pro®le test case. The new scheme is a combination of the QUICK and BSOU
(bounded second-order upwind) schemes. These two schemes do not have the same formal order of accuracy and
for that reason the formal order of accuracy of the new scheme is variable. The scheme is conservative, bounded
and accurate. The performance of the new scheme was assessed in three test cases. The results showed that it is
more accurate than currently used higher-order schemes, so it can be used in a general purpose algorithm in order
to save computational time for the same level of accuracy. # 1998 John Wiley & Sons, Ltd.

Int. J. Numer. Meth. Fluids, 26: 1±16 (1998)
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1. INTRODUCTION

In recent years the discussion concerning errors associated with the discretization of the convection

terms of transport equations has led to the conclusion that the `hybrid' difference scheme should no

longer be used for convective modelling. Leonard and Drummond1 stress the fact that the `hybrid'

scheme gives in some cases not only quantitative but also qualitative errors. However, the `hybrid'

scheme is very robust and, owing to the oscillatory behaviour of higher-order schemes, clear

indication on the advantages of higher-order convective modelling was not conclusive.

The oscillatory behaviour of schemes such as second-order upwind (SOU) and QUICK2 is related

to the boundedness property. Both schemes are unbounded, i.e. in the absence of any source terms the

internal grid node values do not remain between the maximum and minimum boundary values. A

discussion concerning the boundedness mathematical and computational properties is given by

Gaskell and Lau3 and Pascau and Perez.4 Several methods have been developed in order to bound
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higher-order schemes. The BSOU scheme5 is a SOU scheme which blends the ®rst-order upwind

(FOU) scheme in the area where SOU is unbounded. The same is valid for the SMART scheme,3

which is a bounded version of QUICK. NOTABLE4 is another alternative for a higher-order bounded

scheme. The formal accuracy of BSOU is second-order, whilst for QUICK and NOTABLE it is third-

order. The formal order of accuracy of the difference scheme is the result of the higher-order

truncation error analysis on uniform grids.

An important question now is whether the increase in the formal order of accuracy of the

difference scheme gives more accurate results. It is clear that the formal order of accuracy of the

scheme should not be confused with the results accuracy. The results accuracy is measured against an

exact solution and is the main concern of convective modelling. Furthermore, it should also be

noticed that the `hybrid' scheme fails to describe accurately phenomena in which convection is

dominant. In contrast, when strongly diffusive phenomena are present, the `hybrid' scheme gives

adequately accurate results.1,5 For the above reasons the effect of the formal order of accuracy of the

scheme must be studied by means of a convective problem with an analytical solution. A very

extensive study has been carried out by Leonard.6 There it is clear that the increase in the formal

order of accuracy does not guarantee more accurate results. Therefore the behaviour of the scheme is

not always proportional to its formal order of accuracy and it must always be studied before ®nally

the scheme is implemented into the computational code.

The aim of this paper is to present step-by-step the development of a new bounded second=third-

order-accurate scheme called VONOS (variable-order non-oscillatory scheme). The formulation

given is directly applicable for incompressible ¯ows. The scheme is based on the BSOU and QUICK

schemes and its performance is assessed against the SMART and NOTABLE schemes in three test

cases.

2. DEVELOPMENT OF VONOS

The general form of the transport equation of variable f in a two-dimensional Cartesian co-ordinate

system is
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where u and v are the velocities in the x- and y-direction respectively, Gf is the diffusion coef®cient

and Sf denotes the source term.

Equation (1) is discretized by integrating over the control volume shown in Figure 1. The

integration yields
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where each quantity inside brackets is calculated on the corresponding face of the control volume.

The calculation of the derivatives associated with the diffusion terms is made by central

differences, second-order-accurate, since the values of f are known at the centre of the computational

cells and no approximation is involved:
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The convective modelling deals with the approximation of the value of variable f on the cell faces.

The FOU and SOU schemes give

fFOU
e � fP if ue > 0;

fE if ue < 0;

�
�4�

fSOU
e � fP � 1

2
�fP ÿ fW� if ue > 0;

fE � 1
2
�fE ÿ fEE� if ue < 0:

(
�5�

For simplicity the expressions involved in the development of VONOS will be given for uniform

grids only. The ®nal formulation of the scheme will be generalized and include the necessary terms

for non-uniform grids.

The study of the boundedness is made by means of a normalized variable diagram. Assuming that

ue > 0, the normalized variable f̂ is de®ned as

f̂k �
fk ÿ fW

fE ÿ fW

; k � W ;w;P; e;E: �6�

The normalized variable diagram presents the plane �f̂p; f̂e� by the function f̂e � f �f̂p�. The

function f is bounded when the following relations are valid.

(a) For f̂P 2 �0;1� : f �f̂P�4 1 and f �f̂P�5f̂P, f �0� � 0, f �1� � 1:
(b) For f̂P =2 �0;1� : f �f̂P� � f̂P.

The shaded area in Figure 2 and the line f̂e � f̂P show the area where the boundedness condition

is satis®ed. In the same ®gure the FOU, SOU, QUICK and BSOU schemes are also presented. It is

clear that the SOU and QUICK schemes are unbounded.

For completeness the normalized variable expressions for the FOU, SOU and QUICK schemes are

given by

f̂FOU
e � f̂P; �7�

f̂SOU
e � 1�5f̂P; �8�

f̂QUICK
e � 3

8
�1� 2f̂P�: �9�

Figure 1. Control volume
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The procedure applied by Papadakis and Bergeles5 led to the BSOU scheme

f̂BSOU
e �

f̂P for f̂P < 0;

1�5f̂P for 04f̂P <
2
3
;

1 for 2
3
4f̂P 4 1;

f̂P for f̂P > 1:

8>>><>>>: �10�

The NOTABLE scheme4 is described by function

f̂NOTABLE
e � f̂P�f̂2

P ÿ 2�5f̂P � 2�5� for f̂P 2 �0;1�;
f̂P for f̂P =2 �0;1�

(
�11�

and is unconditionally bounded (Figure 3).

Bounding now the QUICK scheme means that the function f must cross the point (0,0) and that the

part of the QUICK curve that exceeds f̂e � 1 is limited to f̂e � 1. The bounded QUICK scheme is

the SMART scheme.3 The point where QUICK crosses f̂e � 1 is f̂P � 5
6
. However, there are

practically in®nite alternatives to connect the point (0,0) with a point on the QUICK curve. In the

present work this is done by means of the line f̂e � 10f̂P as suggested by Leonard and Drummond.1

Then the form of the SMART scheme becomes (Figure 3)

f̂SMART
e �

f̂P for f̂P =2 �0;1�;
10f̂P for 04f̂P <

3
74
;

3
8
�1� 2f̂P� for 3

74
4f̂P 4

5
6
;

1 for 5
6
4f̂P 4 1:

8>>><>>>: �12�

SMART was tested in the pure convection of a step pro®le test case, presented in the next section.

The SMART behaviour according to this test case showed that the curve area where f̂P >
5
6

gives

Figure 2. Convection boundedness criterion: FOU, SOU, BSOU and QUICK in normalized variable diagram
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stability and convergence problems. This is also in accordance with the comments of Gaskell and

Lau.3 Of course, this statement should not be generalized for all ¯ow con®gurations.

VONOS considers the fact that the QUICK scheme has stability problems even in the case where it

is bounded in the region f̂P 2 �56 ;1�. As can be seen in Figure 2, QUICK and SOU cross each other at

f̂P � 0�5. For that reason the QUICK part of the curve is valid only between f̂P � 3
74

and 0�5. The

part of the curve for f̂P > 0�5 is described by the corresponding part of the BSOU scheme. VONOS

(Figure 4) is described by the function

f̂VONOS
e �

f̂P for f̂P =2 �0;1�;
10f̂P for 04f̂P <

3
74
;

3
8
�1� 2f̂P� for 3

74
4f̂P 4 0�5;

1�5f̂P for 0�54f̂P 4
2
3
;

1 for 2
3
4f̂P 4 1:

8>>>>>><>>>>>>:
�13�

From equation (13) it is clear that the scheme does not have constant formal order of accuracy in the

area of f̂P � 0�5. The formal accuracy varies from third-order �f̂P < 0�5, QUICK) to second-order

�f̂P > 0�5, SOU). For that reason the scheme was named VONOS (variable-order non-oscillatory

scheme).

The coef®cients that take into account the non-uniformity of the grid are now given assuming that

ue > 0:

x � DxeP

DxPW

; r � DxEP

DxPW

: �14�

The coef®cients q1 and q2 are related to the QUICK part of VONOS and have the form

q1 �
2� r

4
; q2 �

2� r

4�1� r� : �15�

Figure 3. NOTABLE and SMART in normalized variable diagram
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Then the general formulation of VONOS is

f̂VONOS
e �

f̂P for f̂P =2 �0;1�;
10f̂P for 04f̂P < q2=�10ÿ q1�;
q1f̂P � q2 for q2=�10ÿ q1�4f̂P 4 q2=�1� xÿ q1�;
�1� x�f̂P for q2=�1� xÿ q1�4f̂P 4 1=�1� x�;
1 for 1=�1� x�4f̂P 4 1:

8>>>>><>>>>>:
�16�

As this scheme is non-linear, it is evident that an iterative process is required even for linear cases.

The implementation of higher-order schemes into solvers for non-linear cases presents some

dif®culties, however. Although the schemes are bounded, their non-diffusive character can in some

cases prohibit the total convergence of the solver. For that reason the downwind weighting factor

DWF was proposed by Leonard and Mokhtari.7 DWF is de®ned as

DWF � fe ÿ fP

fE ÿ fP

� f̂e ÿ f̂P

1ÿ f̂P

; �17�

and assuming that ue > 0, we have fe � fP � DWF�fE ÿ fP�. The application of this relation to

equation (2) gives

APfP � AEfE � AWfW � ANfN � ASfS � Sf � Vol � SUx � SUy; �18�
where

AP � AE � AW � AN � AS;

AE � max�0;ÿCE� � DE; AW � max�0;CW � � DW ;

SUx �max�0;CE�DWF�e �fP ÿ fE� �max�0;ÿCE�DWFÿe �fP ÿ fE�
�max�0;CW �DWF�w �fP ÿ fW� �max�0;ÿCW �DWFÿw �fP ÿ fW�;

Figure 4. VONOS in normalized variable diagram
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with

DE � �Gf�e
Dyns

DxEP

; DW � �Gf�w
Dyns

DxPW

;

CE � �ru�eDyns; CW � �ru�wDyns:

The superscripts � and 7 on the downwind weighting factors indicate the direction of the u-

velocity. The downwind weighting factors have to be calculated according to its sign.

The same relations expressed in the y-direction apply for the rest of the coef®cients. In this way the

system of equations can be solved by standard iterative techniques such as ADI. It should be noted

that third-order schemes, when highly convective non-linear problems are concerned, may require the

introduction of underrelaxation factors for the source terms SUx and SUy.

Since the scheme involves ®ve points in each direction (x and y), the boundary nodes must be

treated in a special way. In the present work the FOU approximation was applied to all boundaries.

This was done for ease of implementation (simply by setting the downwind factor equal to zero) and

because boundary conditions of higher order, although having increased accuracy, cause numerical

instabilities.8

The performance of VONOS is assessed in the next section.

3. TEST CASES AND RESULTS

VONOS has been assessed in comparison with the NOTABLE and SMART schemes. The reason for

this is that all three schemes are formally third-order-accurate. The two linear and the one non-linear

cases that have been selected will provide information on the behaviour of each scheme and the

advantages and disadvantages of the schemes' use in computational codes. The selected test cases are

ones for which either analytic solutions or well-established results exist, so that the computational

errors associated with the schemes can be directly calculated. Turbulent ¯ow ®elds have not been

simulated, in order to attribute any differences from the exact solutions to the properties of the

numerical schemes.

3.1. Pure convection of a step pro®le

This is a simple problem that is widely used for the characterization of convection difference

schemes as diffusive or non-diffusive. It is the basis for the development of VONOS. This test

problem simulates the case where two parallel streams of equal velocity but unequal f (e.g.

temperature) come into contact (Figure 5(a)). The diffusion coef®cient is zero and the Reynolds

number is in®nite. Since there is no diffusion present, no mixing layer should form and the f
discontinuity should be maintained in the streamwise direction. This means that any mixing layer

present in the solution is associated with the errors of the numerical scheme used.

Figures 5(b)±5(d) show the performance of NOTABLE, SMART and VONOS by comparison of

the pro®les at x � 0�5 against the exact solution, using a uniform 21621 Cartesian grid for three

different angles y � 25�; 35� and 45� respectively. From these results it is clear that NOTABLE is the

most diffusive scheme. SMART is less diffusive, but it cannot describe the discontinuity as

accurately as VONOS. Since the three schemes are bounded, the solution does not present any

overshoots or undershoots beyond the boundary values f� 1 and 2.
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3.2. Pure convection of a box pro®le

This test case was investigated in order to assess the three schemes' performance in the calculation

of a localized maximum in the transported pro®le. This test case was also selected so as to investigate

the effect of grid re®nement on the results of each scheme. The Reynolds number is again in®nite.

The ¯ow angle to the horizontal direction is constant and equal to 45� (Figure 6(a)). This problem

simulates, for example, the transport of the turbulence kinetic energy produced in a thin shear layer.

Figures 6(b)±6(d) show the results obtained with the three schemes at x� 0�5 for three different

uniform computational grids 21621, 31631 and 41641 respectively. These results indicate that

VONOS describes better than NOTABLE and SMART the box pro®le. The NOTABLE scheme,

although being formally third-order-accurate, presents important undershoots even in the 41641 grid

test.

Figure 5. Pure convection of step pro®le: (a) boundary conditions; (b) x� 0�5, � 25�; (c) x� 0�5, y� 35�; (d) x� 0�5, y� 45�
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For test cases 3.1 and 3.2 the two convection equations were solved explicitly. An underrelaxation

factor of 0�5 was necessary for VONOS and NOTABLE. The SMART scheme had convergence

problems and an underrelaxation factor of 0�1 was employed in order to achieve fully converged

solutions.

The effect of the ¯ow angle y (convection of a step pro®le) and grid re®nement (convection of a

box pro®le), given by the number of grid points in one direction, on the accuracy of NOTABLE,

SMART and VONOS is shown in Figures 7 and 8 respectively. Accuracy is given by the % error

between the numerical results and the exact solution for the f distribution at x� 0�5. The % error is

de®ned as

%error �
PNÿ1

i�2

�fexact ÿ fnumerical�=fexact

�� ��
N ÿ 2

� 100; �19�

Figure 6. Pure convection of box pro®le: (a) boundary conditions; (b) x� 0�5, 21621 grid; (c) x� 0�5, 31631 grid;
(d) x� 0�5, 41641 grid
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where N is the number of grid points in the y-direction. The points i� 1 and N have been excluded

because they represent the boundary conditions. The points whose y coincides with the location of

discontinuities are also excluded, because the exact solution is not de®ned at these positions. From

both ®gures it can be seen that VONOS always gives better results than NOTABLE and SMART.

3.3. Flow inside a lid-driven cavity

The laminar recirculating ¯ow inside a lid-driven cavity has been widely used for the assessment of

numerical schemes. The reason for this is that the ¯ow being laminar, there are no in¯uences from the

Figure 7. Effect of ¯ow angle y on accuracy of NOTABLE, SMART and VONOS (pure convection of step pro®le)

Figure 8. Effect of grid re®nement (NI) on accuracy of NOTABLE, SMART and VONOS (pure convection of box pro®le)
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Figure 9. Comparison of u-velocity pro®les along vertical centreline of cavity obtained with NOTABLE, SMART and VONOS
(80680 grid) against benchmark solution for Re� (a) 100, (b) 400, (c) 1000, (d) 3200 and (e) 5000
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turbulence model on the solver convergence and the results accuracy. As the Reynolds number

increases, the ¯ow turns more and more convective, leading to convergence problems when

unbounded schemes are used.

The Reynolds numbers tested in the present work were Re� 100, 400, 1000, 3200 and 5000. For

NOTABLE, SMART and VONOS ®ve runs for each Reynolds number were made using 20620,

30630, 40640, 60660 and 80680 uniform grids. The SIMPLE algorithm was used in a collocated

grid arrangement. The ¯ow ®eld was assumed converged when all normalized residuals were below

1074. For all runs the underrelaxation factors used were 0�5 for both velocity and pressure. The same

underrelaxation factor was used also for the source terms SUx and SUy, except for Re� 5000 and the

®ner grids 60660 and 80680 where this factor was 0�1. The results are compared with the

benchmark solution of Ghia et al.9

Figures 9(a)±9(e) present the velocity pro®les at the geometric centre of the cavity for all Reynolds

numbers using the 80680 grid. It is clear that for low Reynolds numbers all predicted pro®les

coincide with the benchmark solution. This is valid also for the `hybrid' scheme, as mentioned by

Papadakis and Bergeles.5 The differences of the solutions are visible for Re > 3200. For Re� 5000

there is a larger discrepancy between NOTABLE, SMART and VONOS. NOTABLE again gives the

most diffusive solution and SMART fails to describe accurately the near-wall region. The advantage

of using VONOS is better visible on coarser grids such as the 40640 one.

The velocity pro®les in Figure 10 show that when coarser grids are used, VONOS gives more

accurate results than the other two schemes. This consideration is also proved by Figures 11 and 12.

Figure 11 shows the effect of grid re®nement on the accuracy of the results. It is obvious that as the

Reynolds number increases, VONOS has a superior performance compared with the other two

schemes. For low Reynolds numbers NOTABLE and SMART are closer to the accuracy of VONOS.

An important conclusion from this ®gure is that VONOS reaches practically a grid-independent

solution as early as the 40640 grid, especially for large Reynolds numbers.

Another important point is whether VONOS gives results of the same accuracy in less

computational time than the other two schemes. Figure 12 gives the information concerning the CPU

time used for the calculations. All computations were performed on a Power PC 604 processor. For

all cases VONOS requires less computational time than NOTABLE and SMART. For low Reynolds

numbers the computational time necessary for VONOS is the same as the time used by the other two

Figure 10. Comparison of u-velocity pro®les along vertical centreline of cavity obtained with NOTABLE, SMART and
VONOS (40640 grid) against benchmark solution for Re� (a) 3200 and (b) 5000
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schemes. However, as the Reynolds number increases, the computational time for VONOS (for the

same accuracy) is much less.

Table I presents a comparison of the primary vortex strength value with the benchmark value.9

From this table it is deduced that in all cases VONOS gives the most accurate value. The value for

Re� 3200, which is different from the benchmark value (vortex strength 0�1204), is very sensitive to

small computational errors which are not associated with the velocity pro®le. Furthermore, as is clear

in Figure 9, Re� 3200 is a transition value where the convective character of the ¯ow becomes

predominant.

Finally, Figure 14 presents the performance of NOTABLE, SMART and VONOS when a non-

uniform (20620) grid is used. The grid is re®ned near the walls of the cavity and the non-uniformity

is measured via the grid expansion ratio de®ned by

l � Dxeÿw

Dxwÿww

: �20�

From the predicted pro®les it is clear that as the expansion ratio increases, VONOS comes closer to

the benchmark solution.

Figure 11. Effect of grid re®nement on solution accuracy for NOTABLE, SMART and VONOS at Re� (a) 100, (b) 3200 and
(c) 5000
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4. CONCLUSIONS

The development and assessment of a new scheme for convective modelling, called VONOS, proved

that the scheme can be successfully implemented into the CFD computational codes. The scheme

preserves the boundedness property and for that reason it can be used for every transport equation

without giving stability problems. The performance of the scheme was tested in three test cases and is

totally satisfactory, beyond the accuracy of formally third-order bounded schemes such as

Figure 12. Accuracy as a function of required CPU time for NOTABLE, SMART and VONOS at Re� (a) 100, (b) 3200 and
(c) 5000

Table I. Strength of pimary vortex

Re� 100 Re� 400 Re� 1000 Re� 3200 Re� 5000

NOTABLE 0�1031 0�1125 0�1145 0�1075 0�0995
SMART 0�1031 0�1126 0�1149 0�1094 0�1029
VONOS 0�1032 0�1133 0�1167 0�1170 0�1189
Benchmark 0�1034 0�1139 0�1179 0�1204 0�1189
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Figure 13. Streamlines in cavity: Re� 5000, VONOS scheme, 80680 grid

Figure 14. Comparison of u-velocity pro®les along vertical centreline of cavity obtained with NOTABLE, SMART and
VONOS against benchmark solution for Re� 5000 with 20620 non-uniform grids
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NOTABLE and SMART. Currently the scheme is used in a 3D code for the prediction of the ¯ow and

temperature ®eld in coal-®red utility boilers.
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